This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

STUDIES ON ORGANOPHOSPHORUS COMPOUNDS 54. SYNTHESIS OF 1-HYDROXY-1-ALKYL(ARYL)-2-AMINOETHYLPHOSPHONIC ACIDS AND DERIVATIVES THEREOF

Chengye Yuana; Guohong Wanga; Shoujun Chena; Ludwig Maierb

^a Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, People's Republic of China ^b Ciba-Geigy Ltd., Basel, Switzerland

To cite this Article Yuan, Chengye , Wang, Guohong , Chen, Shoujun and Maier, Ludwig(1991) 'STUDIES ON ORGANOPHOSPHORUS COMPOUNDS 54. SYNTHESIS OF 1-HYDROXY-1-ALKYL(ARYL)-2-AMINOETHYLPHOSPHONIC ACIDS AND DERIVATIVES THEREOF', Phosphorus, Sulfur, and Silicon and the Related Elements, 63: 1, 111-118

To link to this Article: DOI: 10.1080/10426509108029434 URL: http://dx.doi.org/10.1080/10426509108029434

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STUDIES ON ORGANOPHOSPHORUS COMPOUNDS 54. SYNTHESIS OF 1-HYDROXY-1-ALKYL(ARYL)-2-AMINOETHYLPHOSPHONIC ACIDS AND DERIVATIVES THEREOF

CHENGYE YUAN,* GUOHONG WANG and SHOUJUN CHEN

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China

and

LUDWIG MAIER

Ciba-Geigy Ltd. CH-4002 Basel, Switzerland

(Received April 25, 1991; in final form May 22, 1991)

An improved method is developed for the synthesis of 1-hydroxy-1-alkyl(aryl)-2-aminoethylphosphonic acids based on hydrogenation of dialkyl 1-hydroxy-1-alkyl(aryl)-2-nitroethylphosphonates over Raney nickel in acidic medium followed by hydrolysis. The instability of dialkyl 1-hydroxy-1-alkyl(aryl)-2aminoethylphosphonates was rationalized by the formation of a reactive three-membered ring oxide species as the result of intermolecular interaction. The presence of p-toluenesulfonic acid during hydrogenation affords the corresponding ammonium tosylate which can be used directly for the formation of new phosphonopeptides containing a free hydroxyl group.

Key words. Phosphonic acid; amino; hydroxy derivative; 1-hydroxy-1-alkyl(aryl)-2-aminoethylphosphonic acids; phosphonopeptides.

INTRODUCTION

As a phosphorus analogue of isomeric serine, 1-hydroxy-2-amino-ethylphosphonic acid, the unusual aminophosphonic acid containing a hydroxyl group was first isolated from Acanthamoeba Castellanii. Biosynthesis of this amino-phosphonic acid has attracted considerable interests very recently. 2,3 Synthesis of various derivatives of this class of potentially bioactive compounds is important for structureactivity investigations. Alkyl substituted derivatives of 1-hydroxy-2-aminoethylphosphonic acid were prepared either by addition of dimethylphosphite to N-(2oxoethyl) phthalimide followed by hydrazinolysis⁴ or by aminative cleavage of the ethylene oxide ring of phosphomycin derivatives and subsequent hydrolysis.^{5,6} The serious drawback of these methods is associated with the expensive starting materials. Direct hydrogenation of 1-hydroxy-1-alkyl-2-nitroethylphosphonates (1) obtained from the nucleophilic addition of nitromethane to acylphosphonates seems to be more practical for the synthesis of 1-hydroxy-1-alkyl(aryl)-2-aminoethylphosphonic acid (2). Unfortunately, the scope of application of the method reported by Baranov^{7,8} is very limited, especially for the preparation of 1-hydroxy-1-aryl-2aminoethylphosphonic acids (2, h-n). This is probably due to the unstability of the reaction product. Since the basicity of the amino group formed during hydrogenation is strong enough to initiate the C-P and C-C cleavage of the resultant molecule. Therefore it was necessary to work out an improved method for the synthesis of the title compounds based on the careful examination of the reaction conditions.

In recent years, much attention has been paid on the synthesis of phosphonopeptides^{9,10} and the evaluation of their biological activity. In the peptide formation, as a rule, it is usually required to protect either the amino- or phosphonofunction during the coupling process. On the other hand, conversion of free aminophosphonic acids to N-protected or P-protected derivatives is generally accomplished by a multistep reaction sequence, due to the specific chemical properties of the molecule under investigation. Synthesis of phosphonopeptides with a free hydroxyl group is a matter of significant interest both from chemical and biological points of view. Since peptidic 1-hydroxy-phosphonates can be regarded as a new class of transition state analog renin inhibitors.¹¹ These situations encouraged us to devote our efforts to the synthetic study of suitable derivatives of 2 which can be used directly for the synthesis of phosphonopeptides bearing a free hydroxyl group.

RESULTS AND DISCUSSION

Preparation of 1-Hydroxy-1-Alkyl(Aryl)-2-Aminoethylphosphonic Acids

Compounds 1 are unstable in basic medium, however, catalytic hydrogenation of 1 over Raney-Nickel in acetic acid gives 2 in excellent yield.

â	a b	c	d	e	f	g
R CI	H ₃ C ₂ F	I _s n-C ₃ H ₇	n-C ₄ H ₉	cyc-C ₆ H ₁₁	C ₆ H ₅ CH ₂	p-FC ₆ H₄H₂

	h	i	j	k	1	m	n
R	C ₆ H ₅ CH ₂ CH ₂	C ₆ H ₅	p-CH ₃ C ₆ H ₄	m-CH ₃ C ₆ H ₄	p-ClC ₆ H ₄	m-FC ₆ H ₄	o-FC ₆ H ₄

Acetic acid plays an important and interesting role in this reaction. It serves not only as solvent, but also as an accelerator in the hydrogenation process; it also prevents the decomposition of the reaction products. Meanwhile, the use of concentrated acetic acid should be avoided because in such case, the product isolated is usually dark green in color even after treatment with charcoal and multiple recrystallizations. As shown by Atomic Absorption Spectroscopic analysis, the green colored product contains one equivalent atomic weight of nickel. It is rea-

sonable to conclude that the nickel complex with 2 was formed in concentrated acetic acid. Furthermore, by treating the suspension of the dark green colored residue in dilute hydrochloric acid with H_2S followed by removal of the precipitate thus formed, 2 is isolated in high purity. However, formation of the nickel complex can be avoided when an alcoholic solution of acetic acid (5:1) is employed as solvent. In contrast with the literature data, $^{7.8}$ we find that Raney-Nickel works well as a catalyst in this hydrogention process and it is therefore a general and facile method for the preparation of compounds 2.

The failure of Baranov's procedure for the synthesis of 1-hydroxy-1-aryl-2-aminoethylphosphonic acids may be rationalized by the interaction of the reaction product with the starting dialkyl 1-hydroxy-1-aryl-2-nitroethyl phosphonates. In such case, the former behaves as a base (see Scheme I).

For example, dimethyl 1-hydroxy-1-phenyl-2-nitroethylphosphonate (li) was catalytically hydrogenated over Raney Nickel in methanol for ten hours, then hydrolyzed with 1:1 aqueous HCl. After removal of the catalyst and solvent from the complex reaction mixture, benzoic acid can be isolated as the result of the hydrolytic cleavage of benzoylphosphonate.

OH O O-
$$R-C-P(O)(OR')_2$$
 Ph-C P-OCH₃
 CH_2NH_2 H_2NCH_2 OCH₃

3

On the other hand, $^{31}P\text{-NMR}$ serves as an excellent tool to confirm the acceleration effect of dialkyl 1-hydroxy-1-alkyl(aryl)-2-aminoethylphosphonate (3) on the degradation of 1. A mixture of 3 and 1 in CDCl₃ was kept at room temperature for 8 hours. In the $^{31}P\text{-NMR}$ spectrum of this mixture the signals at 16.29 ppm and 22.09 ppm assigned to 1 and 3 respectively disappeared completely, whereas five new signals at 20.51; 10.87; 9.27; 7.56 and -0.75 ppm were observed.

Preparation of Dialkyl 1-Hydroxy-1-Alkyl(Aryl)-2-Aminoethylphosphonate Tosylate

For the synthesis of phosphonopeptides, one of the functionalities either amino or phosphoryl group should be masked before coupling reaction. However, 3 differs greatly from its free acid 2 in stability. The instability of 3 has been documented^{8,9} without any explanation. Our experimental observation suggested that the instability of 3 is associated with the basic property of the amino function which abstracts a proton from the hydroxyl group as the result of an intermolecular interaction. The anion thus formed undergoes cyclization by nucleophilic attack on the phosphorus atom with the formation of the reactive species 4 which is then degradated to a series of by-products. This postulation is well supported by ³¹P-NMR. When 3 was kept at ambient temperature for 24 hours, the original signal was replaced by four new peaks at 21.58, 20.83, 20.37 and 7.24 ppm in ³¹P-NMR spectrum. It was reported that 3 can be isolated as the salt with picric acid.⁷ But picric acid is inconvenient to handle and it is also difficult to remove picrate to generate the free amino-component. In this paper we report a convenient procedure for the preparation of 3 in the form of its tosylate.

1 + TsOH
$$\xrightarrow{[H], \text{ Raney-Ni}}$$
 R—C—P(O)(OR')₂

$$| + - \\ \text{CH}_2\text{NH}_3\text{OTs}$$
5

	a	b	c	d	e
R	CH ₃	n-C ₃ H ₇	C ₆ H ₅ CH ₂ CH ₂	C ₆ H ₅	p-CH ₃ C ₆ H ₄
R'	i-C ₃ H ₇	C_2H_5	CH ₃	СН3	C ₂ H ₅

	f	g	h	i	j
R	m-CH ₃ C ₆ H ₄	p-ClC ₆ H ₄	m-FC ₆ H ₄	m-FC ₆ H ₄	m-FC ₆ H ₄
R'	C ₂ H ₅	C ₂ H ₅	CH ₃	C ₂ H ₅	i-C ₃ H ₇

Hydrogenation proceeds smoothly in the presence of p-toluenesulfonic acid in ethanol. The tosylate of 1-hydroxy-1-alkyl(aryl)-2-aminoethylphosphonates (5) were isolated as a crystalline solid in good yield. They can be used directly in phosphonopeptide synthesis. By treating a dichloromethane solution of 5 with 10% K_2CO_3 , an unstable 3 was isolate which decomposed completely after standing for 24 hours at room temperature.

Synthesis of Phosphonopeptides Containing a Free Hydroxyl Group

New phosphono-peptides containing a free hydroxyl group namely dimethyl 1-hydroxy-1-phenyl-2-N-(N'-benzoxylcarbonylglycyl) aminoethylphosphonate (6a) and dimethyl-1-hydroxy-1-phenyl-2-N-(N'-t-butoxylcarbonylglycyl)-aminoethylphosphonate (6b) are prepared by coupling N-substituted glycine with 5d employing the dicyclohexylcarbodimide /N-hydroxybenzotriazole (DCC/HOBt) method.

Z-GlyOH + 5d
$$\xrightarrow{DCC/HOBt}$$
 C_6H_5 — C — $P(O)(OCH_3)_2$ C_6H_2 NHGly-Z

6
$$Z = C_6H_5CH_2OCO$$
— (a), C_4H_9OCO — (b)

The mixed anhydride method, which is very popular in peptide formation, can not be used in the coupling reaction. In the synthesis of this type of phosphonopeptides, any operation with alkaline washing should be avoided in order not to form reactive species related to 4.

EXPERIMENTAL

Melting points are uncorrected. ¹HNMR are recorded on a Varian EM-360A (60MHz) apparatus. D₂O or D₂O/NaOD is used as solvent and TMS as external standard. ³¹P-NMR are taken on a FX-90Q (90MHz) spectrometer employing CDCl₃ as solvent and 85% H₃PO₄ as external standard. ¹°F-NMR are measured on a Varian EM-360L (60MHz) spectrometer TFA as external standard. IR are taken from a Perkin-Elmer-983G spectrophotometer (KCl or KBr disc). Compounds 1 are synthesized by an improved method developed in our laboratory. 10% Pd/C is prepared from PdCl₂ according to conventional method, Raney-Nickel is prepared by digesting aluminum with sodium hydroxide from Al/Ni alloy. Z-Gly-OH, Boc-Gly-OH, DCC and HOBt are purchased from the Experimental Laboratories, Shanghai Institute of Biochemistry, Academia Sinica, and used as received.

1-Hydroxy-1-alkyl-2-aminoethylphosphonic acid, 2.

General procedure, **Method A**: To a stirred solution of 1 (0.02 mol) in 50 mL of ethanol and 10 mL of glacial acetic acid, is added 1 g of Raney-Ni washed thoroughly with ethanol. The mixture is then hydrogenated at r.t. (18-22°C) and atmospheric pressure until the absorption of hydrogen ceased. The catalyst is filtered off and washed thoroughly with ethanol. The filtrate and washings are combined and

the solvent is removed on a rotatory evaporator. The residue is refluxed with 40 mL of 8 N hydrochloric acid at 100° C for 8 h. After being cooled, the solution is extracted with benzene (10 mL) and the aqueous solution is then evaporated to dryness. After that, the resultant solid or syrupy material is dissolved in a minimum amount of methanol, to this solution propylene oxide is added with stirring until precipitation occurred. The products are collected by filtration and recrystallized from EtOH/H₂O.

1-Hydroxy-1-methyl-2-aminoethylphosphonic acid, **2a**. 75% yield, mp. 242–243°C (dec.) (Literatures 240–243°C). IR (ν , cm $^{-1}$): 3700–2000 (NH, OH), 1130 (P=O), 900 (P—O—H). ¹H-NMR (δ , ppm): 1.19 (d, 3H, J = 12 Hz); 2.55–3.08 (m, 2H).

2b. 81% yield, mp. $242-244^{\circ}$ C (dec.) (Literature⁸ 235-236°C). IR (ν , cm⁻¹): 3700-2000 (OH, NH), 1135 (P=O), 919 (P—O—H). ¹H-NMR (δ , ppm): 0.60-1.25 (m, 3H); 1.4-2.1 (m, 2H); 2.6-3.3 (m, 2H).

2c. 80% yield, mp. 240–241°C (dec.) (Literature⁸ 231–232°C). IR (ν , cm⁻¹): 3100–2000 (NH, OH), 1120 (P=O), 918 (P—O—H). ¹H-NMR (δ , ppm): 0.6–1.0 (t, 3H, J = 6Hz); 1.0–1.9 (m, 4H); 2.7 (d, 2H, J = 12Hz).

2d. 85% yield, mp. 234–235°C (dec.) (Literature⁸ 230–231°C). IR (ν , cm⁻¹): 3700–2000 (NH, OH), 1125 (P=O), 918 (P-O-H). ¹H-NMR (δ , ppm): 0.8–2.0 (m, 9H); 2.6–3.1 (m, 2H).

2e. 78% yield, mp. 236–237°C (dec.). Calculated for $C_8H_{18}NO_4P \cdot H_2O$ (241.0), C 39.83; H 8.30; N 5.81 (%). Found C 40.23; H 8.14; N 5.84 (%). IR (ν , cm⁻¹): 3700–2000 (NH, OH), 1127 (P=O), 904 (P=O+H). ¹H-NMR (δ , ppm): 0.5–2.1 (m, 11H); 2.4–3.3 (m, 2H).

2f. 76% yield, mp. 240–242°C (dec.) (Literature 238–239°C). IR (ν, cm^{-1}) : 3600–2000 (NH, OH), 1105 (P=O), 905 (P—O—H). ¹H-NMR (δ , ppm): 2.3–3.1 (m, 4H); 7.2 (s, 5H).

2g. 75% yield, mp. 239–240°C (dec.). Calculated for $C_9H_{13}FNO_4P$ (249.0), C 43.37; H 5.22; N 5.62 (%). Found C 42.79; H 5.17; N 5.46 (%). IR (ν , cm⁻¹): 3700–2150 (NH, OH), 1151 (P=O), 983 (C—F), 908 (P—O—H). ¹H-NMR (δ , ppm): 2.0–2.7 (d, 2H, J = 14); 2.7–3.1 (m, 2H); 6.7–7.5 (m, 4H). ¹⁹F-NMR: 37.5 ppm.

2h. 78% yield, mp. $246-247^{\circ}$ C (dec.). Calculated for $C_{10}H_{16}NO_4P \cdot H_2O$ (263.0), C 45.63; H 6.84; N 5.32 (%). Found C 46.09; H 6.89; N 5.33 (%). IR (ν , cm⁻¹): 3700–2000 (NH, OH), 1133 (P=O), 918 (P—O—H). ¹H-NMR (δ , ppm): 1.5–2.3 (m, 2H); 2.3–3.1 (m, 4H); 7.0–7.7 (m, 5H).

2i. 82%, mp. 231–232°C (dec.) (Literature⁸ 226–227°C). Calculated for $C_8H_{12}NO_4P$ (217.0), C 44.20; H 5.58; N 6.45 (%). Found C 43.89; H 5.57; N 6.27 (%). IR (ν , cm⁻¹): 3700–2000 (NH, OH), 1140 (P=O), 905 (P—O—H). ¹H-NMR (TFA/TMS, δ , ppm): 3.4 (m, 2H); 6.5–6.8 (m, 8H).

2j. 82% yield, mp. 225–226°C (dec.). Calculated for $C_0H_{14}NO_4P \cdot H_2O$ (249.2) C 43.37; H 6.48; N 5.62 (%). Found C 43.45; H 6.65; N 5.53 (%). IR (ν , cm⁻¹): 3700–2000 (NH, OH), 1138 (P=O), 900 (P=O-H). ¹H-NMR (δ , PPM): 2.07 (s, 3H); 3.05 (d, 2H, J = 6Hz).

2k. 70% yield. mp. 218–220°C (dec.). Calculated for $C_9H_{14}NO_4P$ (231.2). C 43.37; H 6.48; N 5.62 (%). Found C 43.68; H 6.71; N 5.40 (%). IR (ν , cm⁻¹): 3700–1950 (NH, OH), 1151 (P=O), 909 (P—O—H). 'H-NMR (δ , ppm): 2.2 (s, 3H); 3.2 (d, 2H, J = 6Hz); 7.2 (m, 4H).

21. 80% yield, mp. 235–236°C (dec.). Calculated for $C_8H_{11}CINO_4$ (251.6). C 38.18; H 4.42; N 5.56 (%). Found C 38.20; H 4.80; N 5.05 (%). IR (ν , cm⁻¹): 3700–2000 (NH, OH), 1487 (C—Cl), 1049 (P—O), 908 (P—O—H). ¹H-NMR (δ , ppm): 3.5 (m, 2H, CH₂N), 7.8 (m, 4H).

2m. 89% yield, mp. 237–238°C (dec.). Calculated for $C_8H_{11}FNO_4P$ (235.0). C 40.86; H 4.68; N 5.96 (%). Found: C 40.89; H 4.58; N 5.84 (%). IR (ν , cm⁻¹): 3700–1900 (NH, OH), 1143 (P=O), 1100 (C—F), 918 (P—O—H). ¹H-NMR (δ , ppm): 2.99–3.65 (m, 2H); 6.64–7.50 (m, 4H). ¹⁹F-NMR: 34.09 ppm.

2n. 84% yield, mp. 247–248°C (dec.). Calculated for $C_8H_{11}FNO_4P$ (235.0) C 40.86; H 4.68; N 5.96 (%). Found: C 40.17; H 4.86; N 5.72 (%). IR (ν , cm⁻¹): 3700–2000 (NH, OH), 1211 (P=O), 1132 (C-F), 907 (P-O-H). ¹H-NMR (δ , ppm): 3.2 (d, 2H, J = 6H2); 6.5–7.7 (m, 4H). ¹⁹F-NMR: 29.5 ppm.

Method B: The procedure is similar with that described for method A except that instead of Raney-Ni, 10% Pd/C in glacial acid (30 mL) is used. After the hydrogenation, the catalyst is filtered off, the filtrate is directly refluxed with equal volume of concentrated hydrochloric acid for 8 h. After work up, 2a and 2i are obtained in 80% and 89% yields, respectively.

Dialkyl 1-hydroxy-1-alkyl-2-aminoethylphosphonate tosylates, 5. General procedure: 0.01 mol of 1 and 1.9 g of p-toluenesulfonic acid monohydrate are dissolved in 20-30 mL of ethanol, 0.5 g of Raney-Ni added and the mixture stirred. The resultant mixture is then hydrogenated at 20-25°C at atmospheric pressure until the absorption of hydrogen ceased (12-24 h). The catalyst is then filtered off and washed thoroughly with ethanol. The filtrate and washings are combined and evaporated on a rotatory evaporator. The solid or syrupy products thus obtained are triturated with diethyl ether until solidification occurred. The product is collected and recrystallized from ether/ethanol.

- **5a.** 68% yield, mp. 72–74°C. Calculated for $C_{16}H_{30}NO_7PS$ (411.5), C 46.69; H 7.36; N 3.40 (%). Found C 45.98; H 7.67; N 3.25 (%). IR (ν , cm⁻¹): 3700–2000 (N—H, O—H), 1210 (P=O), 1000 (P=O—C), 680 (S—O). ¹H-NMR (δ , ppm): 1.2 (d, 12H, J = 12 Hz); 1.4 (d, 3H, J = 15 Hz); 2.2 (s, 3H); 3.1 (d, 2H, J = 9 Hz); 4.2–5.0 (m, 2H, inv. in H_2O); 7.2 (d, 2H, J = 7Hz); 7.6 (d, 2H, J = 7 Hz).
- **5b.** 60% yield, mp. 113–114°C. Calculated for $C_{16}H_{30}NO_7PS$ (411.5). C 46.69; H 7.36; N 3.40 (%). Found C 46.37; H 7.38; N 3.31 (%). IR (ν, cm^{-1}) : 3700–2000, 1200, 1030, 680. ¹H-NMR (δ, ppm) : 0.82 (t, 3H, J = 6 Hz); 1.0–2.0 (m, 10 H); 2.22 (s, 3H); 3.10 (d, 2H, J = 12 Hz); 3.85–4.37 (m, 4H); 7.20 (d, 2H, J = 8 Hz); 7.55 (d, 2H, J = 8Hz).
- **5c.** 87% yield, mp. 134–135°C. Calculated for $C_{19}H_{28}NO_7PS$ (446.0). C 51.12; H 6.28; N 3.14 (%). Found C 50.64, H 6.23; N 3.07 (%). IR (ν , cm⁻¹): 3700–2000, 1210, 1030, 680. ¹HNMR (δ , ppm): 1.45–2.13 (m, 2H); 2.00 (s, 3H); 2.27 (t, 2H); 2.84 (d, 1H, J = 6 Hz); 3.10 (s, 1H); 3.57 (d, 6H, J = 11Hz); 6.95 (s, 7H); 7.30 (d, 2H, J = 8).
- **5d.** 90% yield, 154–155°C. Calculated for $C_{17}H_{24}NO_7PS$ (417.0) C 48.92; H 5.76; N 3.36 (%). Found C 48.62; H 5.39; N 3.03 (%). IR (ν , cm⁻¹): 3500–2000, 1180, 1025, 675. ¹H-NMR (δ , ppm): 2.12 (s, 3H); 3.2–3.6 (q, 8H); 6.9–7.5 (m, 9H).
- **5e.** 72% yield, mp. 126–127°C. Calculated for $C_{20}H_{30}NO_7PS$ (459.5) C 52.28; H 6.58; N 3.05 (%). Found C 52.24; H 6.56; N 3.04 (%). IR (ν , cm⁻¹): 3700–2000, 1215, 1030, 680. ¹H-NMR (δ , ppm): 0.8–1.2 (m, 6H, 2CH₃); 2.13 (s, 3H, CH₃Ar); 3.3–4.1 (m, 6H, 2CH₂O + CH₂N); 6.9–7.65 (m, 8H_{arom}).
- **5f.** 70% yield, mp. 139–140°C. Calculated for $C_{20}H_{30}NO_7PS$ (459.5) C 52.28; H 6.58; N 3.05 (%). Found C 52.78; H 6.39; N 3.04 (%). IR (ν, cm^{-1}) : 3700–2000, 1220, 1030, 685. ¹H-NMR (δ, ppm) : 0.85–1.25 (m, 6H, 2CH₃); 2.20 (s, 3H, CH₃Ar); 3.56 (d, 2H, J = 8 Hz, CH₂N); 3.8–4.1 (m, 4H, 2CH₂O); 7.1–7.6 (m, 8H_{arom}).
- **5g**. 83% yield, mp. 160.5–162°C. Calculated for C₁₉H₂₇ClNO₇PS (480.0) C 47.50; H 5.68; N 2.92; Cl 7.39 (%). Found C 46.99; H 5.48; N 2.90; Cl 7.37 (%). IR (ν , cm⁻¹): 3700–2000, 1210, 1030, 680. ¹H-NMR (δ, ppm): 1.00–1.35 (m, 6H); 2.27 (s, 3H); 3.50–4.27 (m, 6H, 2CH₂O + CH₂N); 7.05–7.80 (m, 8H_{arom}).
- **5h.** 96% yield, mp. 149–150°C. Calculated for $C_{17}H_{23}FNO_7PS$ (435.4) C 46.89; H 5.33; N 3.22 (%). Found C 46.56; H 5.37; N 3.08 (%). IR (ν , cm⁻¹): 3700–2000, 1210, 1060, 1030, 680. ¹H-NMR (δ , ppm): 2.25 (s, 3H); 3.18–3.94 (m, 8H, CH₂N + 2CH₃OP); 6.78–7.78 (m, 8H_{arom}). ¹°F-NMR (D₂O/TFA, δ): 35.0 ppm.
- 5i. 92% yield, mp. 137–138°C. Calculated for $C_{19}H_{27}FNO_7PS$ (463.0) C 49.24; H 5.83; N 3.02 (%). Found C 49.63; H 5.81; N 3.00 (%). IR (ν , cm $^{-1}$): 3500–2000, 1210, 1060, 1030, 680. ¹H-NMR (δ , ppm): 0.85–1.48 (m, 6H); 2.35 (s, 3H); 3.33–4.36 (m, 6H, 2CH₂O + CH₂N); 6.93–7.90 (m, 8H_{arom}). ¹⁹F-NMR (D₂O/TFA, δ): 35.0 ppm.
- **5j.** 84% yield, mp 144–145°C. Calculated for $C_{21}H_{31}FNO_7PS$ (491.4) C 51.32; H 6.31; N 2.85 (%). Found C 51.51; H 5.71; N 2.74 (%). IR (ν , cm⁻¹): 3700–2000, 1210, 1030, 1010, 680. ¹H-NMR (δ, ppm): 0.7–1.5 (m, 12H); 2.2 (s, 3H); 3.5 (d, 2H, CH₂N, J = 6Hz); 6.8–7.8 (m, 8H_{arom}). ¹⁹F-NMR (D₂O/TFA, δ): 35.5 ppm.

Diethyl 1-hydroxy-1-(m-fluorophenyl)-2-aminoethyl-phosphonate (3i). A suspension of 5i (0.5g) in CH₂Cl₂ (30 mL) is quickly treated with 10 mL 10% K_2CO_3 solution. The organic layer is separated and the aqueous layer is extracted with CH₂Cl₂ (3 × 10 mL). The combined CH₂Cl₂ solution is dried over anhydrous sodium sulfate. After removal of the solvent in vacuum, the ³¹P-NMR and ¹H-NMR of the oily product thus obtained are immediately recorded. ¹H-NMR (CDCl₃/TMS, δ , ppm): 1.10–1.60 (t, 6H, J = 6Hz); 2.6–3.7 (br, 4H, CH₂N, NH₂); 3.8–4.5 (m, 4H, 2CH₂O); 5.30 (s, 1H, OH); 6.8–7.7 (m, 4H_{arom}). ³¹P-NMR (CDCl₃/85% H₃PO₄, δ): 22.09 ppm. After standing for one day, its ³¹P-NMR spectrum showed several signals at 21.58, 20.83, 20.39 and 7.24 ppm.

Dimethyl 1-hydroxy-1-phenyl-2-N-(N'-benzoxycarbonylglycyl)-aminoethylphosphonate, **6a**. A suspension of Cbz-glycine (0.15 g 0.72 mmol), HOBt (0.14 g, 1 mmol) and DCC (0.15 g, 0.72 mmol) in 5 ml of CH₂Cl₂ are stirred at r.t. for 4 h. then cooled to -5° C with an ice-salt bath. At that temp. **5d** (0.3 g, 0.72 mmol) is added followed by dropwise addition of triethylamine (0.72 mmol). The temperature is maintained at $0-5^{\circ}$ C for 2 h. and then rised to r.t. (20°C) for 12 h. Finally 20 mL of ethylacetate is added and the undissolved materials are filtered off. After evaporation of the solvents under reduced pressure the product is separated by chromatography on a silica TLC plate; yield 50% of **6a**, a white powder, m.p. 170–172°C. Calculated for C₂₀H₂₃N₂O₇P (436.4). P 7.10 (%); Found P 6.70 (%). IR (ν , cm⁻¹): 3400, 1695, 1200, 1020. ¹H-NMR (CDCl₃/TMS, δ , ppm): 3.25–3.85 (m, 10H 2OCH₃ + 2NCH₂); 5.05 (s, 2H, CH₂Ph); 7.35 (m, 10H_{arom}).

Dimethyl 1-hydroxy-1-phenyl-2-N-(N'-t-butoxycarbonylglycyl) amino ethylphosphonate, **6b**. Boc-glycine (0.13 g, 0.74 mmol) is coupled with **5d** in a similar manner as described above. After work-up, **6b** is obtained in 86% yield as a colorless crystalline solid, mp. 157–158°C. Calculated for $C_{17}H_{27}N_2O_7P$

(402.4). C 50.74; H 6.78; N 6.96; P 7.70 (%). Found C 50.75; H 6.57; N 6.91; P 7.40 (%). IR (ν , cm⁻¹): 3422, 3254, 1684, 1202, 1174, 1031. ¹H-NMR (CDCl₃/TMS, δ , ppm): 1.26 [s, 9H, (CH₃)₃C]; 3.24–3.90 (m, 10H, 2NCH₂ + 2CH₃O); 4.40 (br, 2H, 2CONH); 6.90–7.60 (m, 5H_{arom}). Ms (EI, 70 ev); 403 (M + 1, 11.72%); 293 (10.23%); 237 (44.89%); 216 (90.48%); 193 (24.47%); 105 (100%); 80 (50.28%).

ACKNOWLEDGEMENT

The project was supported by the National Natural Science Foundation of China.

REFERENCES

- 1. E. D. Korn, D. G. Dearbon and E. A. Sokdoski, J. Biol. Chem., 248, 2257 (1973).
- 2. F. Hammerschmidt, Phosphorus and Sulfur, 30, 575 (1987).
- 3. F. Hammerschmidt, Ann. Chim., 537, 955, 961 (1988).
- 4. T. Tone, Y. Okamoto and H. Sakuvai, Chem. Lett., 1349 (1978).
- 5. J. Zyymunt, Pol. J. Chem., 52, 227 (1978); 54, 233 (1980).
- 6. Y. Vidal and B. Clin, Bull. Soc. Pharm., Bordeaux, 121, 3 (1982).
- G. M. Baranov, T. A. Mastryukova, V. V. Perekalin, M. V. Ponomarenk and M. I. Kabachnik, Izv. Akad. Nauk. SSSR, ser. khim., 179 (1969). CA., 70 115264b.
- A. V. Serdyukova, G. M. Baranov and V. V. Perekalin, Zh. Obsch. Khim., 48, 522 (1978). CA., 89 24455r.
- 9. G.-H. Wang, Ph.D. Dissertation, Shanghai Institute of Organic Chemistry, Academia Sinica, 1990.
- P. Kafarski, Pr. Nauk. Inst. Chem. Org. Fiz. Polilech, Wrocław, 36, 1-68 (1989). CA., 113 151502z.
- 11. D. V. Patel, K. Rieuy-Gauvin and D. E. Ryono, Tetrahedron Lett., 31, 5587 (1990).